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Abstract

Before joining Visual Website Optimizer, I ran A/B testing at AOL
Patch and acted as an statistical consultant. Whenever an A/B test con-
cluded, people would approach me and ask questions about the results.
One of the most common questions I was asked was “what is the proba-
bility that version B is better than version A?” Unfortunately, at the time
I was using frequentist testing methods, and I was completely unable to
provide an answer to that question. In fact, I was unable to answer most of
the questions I was asked, and instead had to give unintuitive alternative
statistics that didn’t really address the question.

At Visual Website Optimizer, we have solved this problem. We have
a new Bayesian statistical method which provides concrete, intuitive an-
swers to all these questions. The new method mitigates some methodology
errors that many people doing A/B testing make, and we’ve also modified
the tool steer the user in a scientifically sound direction.

1 The Problem

The number one question a user typically asks me at the end of a test is the
following: what is the probability that variation B is better than variation A?
In mathematical terms, they want to know:

P (λB > λA) (1.1)

where λA,B is the conversion rate of variation A or B.
Unfortunately, the standard frequentist statistical techniques cannot answer

this question. Instead, a frequentist technique will choose a null hypothesis, e.g.
H0 which represents the claim that λB ≡ λA. Then a hypothesis test will be
run, and a test statistic te is computed from the experiment.

Finally, a p-value will be computed. The p-value is defined as:

p ≡ P (t ≥ te|H0) (1.2)
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If a p-value is reported, then this means that if we ran an A/A test with
the same sample size, the probability of seeing a result at least as “extreme” as
what we just saw is smaller than p.

To the best of my knowledge, no marketer or web designer has ever asked a
statistician for this number.

Moreover, this number is often wrongly misinterpreted as being P (λB > λA).

1.1 Representing uncertainty

A staple of frequentist statistics is the maximal likelihood estimate. This pro-
vides a single number which is often interpreted as being the “most likely” value
of a statistic. However, presenting such a number is often misleading. The re-
ality of statistics is that uncertainty is always present. All we, as statisticians,
can do is quantify it.

At VWO we typically communicate uncertainty by providing credible inter-
vals - a credible interval is a region which has a specified probability of containing
the true value. This is described in detail in Definition 3.1 on 3.

1.2 Methodology

Many blog posts, articles and tutorials have been written about how to avoid
errors when running A/B tests. In fact, it would be far easier for me to write a
document on how to create false positives than it would be to write a document
on how to avoid them. Most A/B testing tools, including the old version of
VWO, made it very easy to make such mistakes.

For example, one can go “fishing” for a result by choosing multiple goals,
and then choosing the goal for which a result is demonstrated by changing the
primary goal at the end of the test. The new version of VWO will warn the
user anytime a goal change is attempted, and all reported results will contain
an audit log of changes of this nature.

Because of this, agencies and their clients can have more confidence that the
results are being reported based on proper methodology, rather than fishing for
something interesting to show the client. This is a real problem as described
here: https://www.chrisstucchio.com/blog/2015/ab_testing_segments_and_
goals.html.

2 Introduction

Since this document concerns A/B testing, let us define a few terms. Suppose we
have displayed some variation of the site (for concreteness suppose it is variation
A) to nA users. We suppose that somewhere out in the real world, there is a
true conversion rate λA - this means that for each user we show variation A to,
there is a λA probability that user will convert.
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3 Probability distributions

A probability distribution is a set of possible values for a parameter (e.g. λA)
together with a function saying how likely any individual parameter is. For our
purposes, the only relevant parameter is the click through rate of some variation
λA, so we’ll focus on this. To begin, we’ll simply assume there is one variation
λA = λ.

The probability distribution P (λ) represents our opinion as to which values
the parameter are more likely. Any probability distribution must satisfy the
following properties:

∀λ, P (λ) ≥ 0 (3.1a)

∫ 1

0

P (λ)dλ = 1 (3.1b)

The symbol ∀ means “for all” - i.e., (3.1a) means that for any specific value
of λ, the value of P (λ) must be positive.

Definition 3.1 An x − %-credible interval is a region [a, b] with the property
that: ∫ b

a

P (λ)dλ ≥ x (3.2)

In words, if the 95% credible interval for a probability distribution is [0.35, 0.40],
it means we are 95% confident that the true value of the parameter is contained
in the interval [0.35, 0.40].

4 Bayesian Statistics

Bayesian statistics is the mathematical study of changing your opinion based
on evidence. It provides a rule, namely Bayes Rule, which gives an optimal way
of changing your beliefs.

I’ll now walk through the process of actually changing your opinion, but
before I do that I need a definition.

Definition 4.1 The conditional probability P (A|B) represents the probability
of A being true assuming that B is true.

As an example, P (conversion|λ) = λ - this means that if we know the value
of λ, then the probability of a conversion occuring is known to be λ.
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4.1 The Prior - an uneducated opinion

To begin doing Bayesian Statistics, you must come up with a prior. A prior is
your uneducated opinion - it’s what you believe before you have evidence. For
example, if I believe all possible values of λ are equally likely, I might choose
the function P (λ) = 1.0. If I believe values closer to zero than to one are more
likely, I could choose P (λ) = 2(1− x).

4.1.1 Pulling a prior from your posterior

It is important to emphasize that there is usually no scientific basis for choosing
a prior. The prior is completely subjective, and different people may choose
different ones.

This is totally fine. An important fact about Bayesian statistics is that
although people may disagree at the beginning, once evidence is gathered they
will eventually agree.

This is where the whimsical phrase “pull a prior from your posterior” comes
from. It means that it’s completely acceptable to make up a silly prior with no
data - once you find data, you’ll be able to change your opinions.

4.2 Evidence

The next step in doing Baysian Statistics is to gather evidence. This means
running an experiment which has an outcome that changes depending on the
true value of λ.

In our case, evidence involves displaying a variation to a set of users. So for
concreteness, suppose we display variation A to nA users. We then count the
number of successes and observe that cA users convert.

If λA is large, then we expect that the cA will be nearly as large as nA - if
λA = 1.0 we will have that nA = cA. Conversely, if λA = 0.0, then nA = 0.

This means that our experiment generates evidence about the true value of
λA.

4.3 The Posterior - how to change your opinion

This part is where Bayesian statistics gets it’s name. To change your opinion
after observing evidence, Bayes rule is used. In it’s full glory:

P (λ|evidence) =
P (evidence|λ)P (λ)

P (evidence)
(4.1)

The left side of (4.1) represents your posterior - your opinion after observing
the evidence.

Lets go through the right side of the equation. The expression P (λ) repre-
sents your prior - your opinion before observing any evidence. The expression
P (evidence|λ) represents the probability of observing the evidence assuming
you know the true value of λ.
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Figure 1: Another example of converting a prior to a posterior, this time in the
form of pictures. In this case, the prior was P (λ) = Const · λ1.1(1− λ)30). The
evidence was displaying the page to 794 users, of whom 12 converted.

Finally, the term P (evidence) is the probability of having observed the evi-
dence you actually did observe. The important fact to note about P (evidence)
is that it does not vary with λ.

4.3.1 An example

Suppose that to begin with, P (λ) = 1.0. This represents the case that before
any evidence, we believe the conversion rate could be anything. Now suppose
we show a single user the test, and this user does NOT convert. Lets compute
the posterior.

First, observe that P (evidence|λ) = 1 − λ. This follows because if the
probability of the user converting was λ, then the probability of the user NOT
converting must be 1− λ. We can now compute P (evidence):

P (evidence) =

∫ 1

0

P (evidence|λ)P (λ)dλ =

∫ 1

0

(1− λ) · 1dλ =

[
λ − λ2

2

]1

0

=
1

2

We can now compute P (λ|evidence):

P (λ|evidence) =
(1− λ) · 1

1/2
= 2(1− λ)

5 The Beta Distribution - simplifying the calcu-
lation

The Beta Distribution is defined as follows:

f(x; a, b) =
xa−1(1− x)b−1

B(a, b)
, 0 ≤ x ≤ 1 (5.1)
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Figure 2: Example of the concentration of the beta distribution for increasing
(a, b). The first graph represents f(x; 10, 90), the second f(x; 100, 900).

where

B(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
(5.2)

The beta distribution has a wonderful property which makes it very useful
in Bayesian inference.

Theorem 5.1 Suppose the prior P (λ) = f(λ; a, b). Suppose that the variant
was displayed to n visitors and c converted. Then the posterior is given by:

P (λ|n, c) = f(x; a+ c, b+ (n − c)) (5.3)

This theorem is proven in many places, e.g. on wikipedia: http://en.

wikipedia.org/wiki/Beta_distribution#Bayesian_inference

This theorem allows us to compute a posterior for conversion rates in a
simple way, provided the prior is a beta distribution.

Many possible priors can be represented via a beta distribution. Figures 2,
3 and 4 illustrate the diversity of shapes which can be represented this way. A
uniform prior is given by the choice (a, b) = (1, 1).

Using the Beta distribution, we need to track only 2 numbers to compute a
posterior - n and c. Then, whenever the posterior needs to be manipulated, we
can compute the posterior directly:
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Figure 3: Example of the shift in mean for the beta distribution. The first graph
represents f(x; 10, 90), the second f(x; 40, 60).

Figure 4: Example of the singular nature of the beta distribution for values of
a ≤ 1.0.The first graph represents f(x; 0.5, 5), the second f(x; 1.0, 5).
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5.1 Intuitive interpretation of the parameters

In general, if you want a prior with mean µ and variance σ2, they can be found
via the formulae:

µ =
a

a+ b
(5.4a)

σ2 =
ab

(a+ b)2(a+ b+ 1)
(5.4b)

We can solve (5.4) for (a, b) as follows:

b = a(1− µ)/µ (5.5)

Substituting (5.5) into (5.4b) yields:

σ2 =
a2(1− µ)

µ(a+ b)2(a+ b+ 1)
=

a2(1− µ)

µ(a[1 + (1− µ)/µ])2(a+ a(1− µ)/µ+ 1)

=
(1− µ)

µ(1 + (1− µ)/µ)2(a/µ+ 1)
(5.6)

Rearranging (5.6) yields:

a =
1− µ− σ2µ3

σ2µ2
(5.7a)

b =
(1− µ)[1− µ− σ2µ3]

σ2µ3
(5.7b)

6 The Joint Posterior for 2 variants

At this point we are now ready to discuss actual A/B tests. Suppose we have two
page variants - say A and B. Suppose we have run an experiment, displaying
variant A and B to nA and nB users. At this point we can compute a posterior
for each variation - PA(λA) and PB(λB).

(I’ll discuss the case of more page variants later.)
The joint posterior of A and B together is:

P (λA, λB) = PA(λA)PB(λB) (6.1)

The joint posterior can be used to calculate various quantities of interest.
The major quantities we are interested in are loss functions - functions which
measure what sort of a mistake we will make assuming we choose a variant and
stop the test.

In pictures, we can plot the joint posterior as a function of two variables -
c.f. Figures 5, 6 and 7.
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Figure 5: Joint posterior near the start of the test. Points in the grey and white
region represent highly likely values of (λA, λB), while dark regions represent
areas of low probability for same. The blue line plots λA = λB .
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Figure 6: Joint posterior near the middle of the test. The posterior is narrowing.
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Figure 7: Joint posterior at the end of the test. The posterior has narrowed to
the point where it lives almost entirely on one side of the blue line, and we can
conclude that control is superior to the variation.
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6.1 Chance to beat control

Suppose we have some evidence, and then we choose to display variant A. What
is the probability we made a mistake?

Definition 6.1 The error probability is the probability we made a mistake:

E[I](A) =

∫ 1

0

∫ λA

0

P (λA, λB)dλBdλA (6.2a)

I.e., this is the probability that λB > λA. Similarly:

E[I](B) =

∫ 1

0

∫ 1

λA

P (λA, λB)dλBdλA (6.2b)

This definition is intuitively the obvious choice to determine whether it is
worthwhile to continue the test.

However, this metric is flawed in an important way for making decisions - it
treats all errors as equally bad.

6.2 The Loss Function

The loss function corrects the error function in an important way. It treats
small errors as less bad than big ones.

Definition 6.2 The loss function is the amount of uplift that one can expect to
be lost by choosing a given variant, given particular values of λA and λB:

L(λA, λB , A) = max (λB − λA, 0) (6.3a)

L(λA, λB , B) = max (λA − λB , 0) (6.3b)

As an example, suppose we choose to display variant A. Suppose the con-
version rate for A is known to be λA = 0.1 and the conversion rate for B is
λB = 0.15. Then the loss max(0.15− 0.1, 0) = 0.05. In contrast,if we chose B,
the loss would be max(0.1− 0.15, 0) = 0.0.

Definition 6.3 The expected loss given a joint posterior is the expected value
of the loss function:

E[L](?) =

∫ 1

0

∫ 1

0

L(λA, λB , ?)P (λA, λB)dλBdλA (6.4)

Here, the ? symbol can take the value of either A or B, depending on which
version we choose to display.
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6.3 Computing the loss and error functions

It is fairly straightforward to compute the error or loss function computationally.
Computationally, suppose we have two posteriors:

Algorithm 6.4 Computing the Joint Posterior.

posteriorA = ...do work here...

posteriorB = ...do work here...

joint_posterior = zeros( shape=(100, 100) ) #The joint posterior is a 2d array

for i in range(100):

for j in range(100):

joint_posterior[i,j] = posteriorA[i] * posteriorB[j]

The error function can be computed as follows:

Algorithm 6.5 Computing the Error Function.

errorFunctionA = 0.0

for i in range(100):

for j in range(i, 100):

errorFunctionA += joint_posterior[i,j]

This code is equivalent to (6.2a). To compute (6.2b), one would do this:

errorFunctionB = 0.0

for i in range(100):

for j in range(0, i):

errorFunctionB += joint_posterior[i,j]

6.3.1 Computing the loss function

To compute the loss function, one would do:

Algorithm 6.6 Computing the loss function.

def loss(i, j, var):

if var == ’A’:

return max(j*0.01 - i*0.01, 0.0)

if var == ’B’:

return max(i*0.01 - j*0.01, 0.0)

lossFunction = 0.0

for i in range(100):

for j in range(100):

lossFunction += joint_posterior[i,j] * loss(i,j,’A’)
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Remark 6.7 It is also possible, in the case of measuring conversion rates
and two variables, to compute things with a closed form solution. This is
described here: https://www.chrisstucchio.com/blog/2014/bayesian_ab_

decision_rule.html and is based on a formula derived by Evan Miller here:
http://www.evanmiller.org/bayesian-ab-testing.html. The code I wrote
does not use this method, since that would only work in the two-variable case.

7 Running a Bayesian A/B test

Before moving on to 3+ variants, lets now explain how an A/B test works.
The basic idea is to choose a desired error tolerance, which we denote by ε, a
threshold of loss which is considered acceptable. Then the A/B test is run until
the expected loss is below this specified tolerance.

The interpretation of ε is as follows - ε is a percentage. It represents how
much lift one would expect to lose by making a particular choice given that the
choice is wrong. It should be set to a number so low that one does not care if
an error is made by this amount.

Example 7.1 Suppose we are testing two button colors, and we are interested
in measuring lift of 10%. Conversely, if the lift we get from this test changes
negatively by 0.2% or less, this change is so small that we don’t care. In that
case, we can choose ε = 0.002.

Algorithm 7.2 Running a Bayesian A/B test.

1. Run an experiment, displaying variants A and B to a random selection of
users.

2. Periodically, compute the aggregate statistics nA, cA, nB and cB. (Recall that
nA is the number of times variant A was displayed, and cA is the number of
times variant A converted.)

3. Compute E[L](A) and E[L](B). Define the set A = {x : E[L](x) < ε}. The
computation of E[L](A) can be performed as described in section 6.3.1.

4. If A is empty, go to step 1. Otherwise stop the test, choose an element of A
and declare it to be the winner.

8 Running a test with more than two variants

For more variants, the loss function is straightforward to define:

L(λA, λB , λC , A) = max (λB − λA, λC − λA, 0) (8.1a)

To compute L(λA, λB , λC , B), one does:

L(λA, λB , λC , B) = max (λA − λB , λC − λB , 0) (8.1b)
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and similarly for C, etc.
If you had 4 variants, the loss function would be:

L(λA, λB , λC , λD, A) = max (λB − λA, λC − λA, λD − λA, 0) (8.2)

One would define the loss function similarly for 5 or more variants.
In principle, we could run the multivariant version of Algorithm 7.2 to de-

termine whether to finish or continue the test:

Algorithm 8.1 Running a Bayesian A/B/C/etc test.

1. Run an experiment, displaying variants A,B,C, . . . to a random selection of
users.

2. Periodically, compute the aggregate statistics nA, cA, nB , cB , . . .. (Recall that
nA is the number of times variant A was displayed, and cA is the number of
times variant A converted.)

3. Compute E[L](A), E[L](B), . . .. Define the set A = {x : E[L](x) < ε}.

4. If A is empty, go to step 1. Otherwise stop the test, choose an element of A
and declare it to be the winner.

Unfortunately, computing the expected loss is not so straightforward using
the methods we’ve described previously. If we have 3 variants, the numerical
integration technique described above would involve a triple for loop:

def loss(i, j, var):

if var == ’A’:

return max(j*0.01 - i*0.01, k*0.01-i*0.01, 0.0)

if var == ’B’:

return max(i*0.01 - j*0.01, k*0.01-j*0.01, 0.0)

if var == ’C’:

return max(i*0.01 - k*0.01, j*0.01-k*0.01, 0.0)

lossFunction = 0.0

for i in range(100):

for j in range(100):

for k in range(100):

lossFunction += joint_posterior[i,j,k] * loss(i,j,k,’A’)

This requires summing 1003 = 1, 000, 000 numbers, which is not terribly
unreasonable. If we have 4 variants, it will require summing 1004 = 100, 000, 000
numbers. This will rapidly become intractable.

Enter Monte Carlo methods, which allow us to approximate the integral via
sampling.
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8.1 Chance to beat Control, Chance to beat All

Given the posterior, we can compute these two useful quantities.
The first is the chance to beat control. This is defined as the probability that

a given variation (say B) has a higher conversion rate than the control.

CT BC(B) =

∫
. . .

∫
λB>λA

P (λA, λB , . . . , λk)dλAdλB . . . dλk (8.3)

We can also define the chance to beat all as the probability that a given
variation (say B) has a higher conversion rate than every other variation.

CT BA(B) =

∫
. . .

∫
(λB>λA)∧(λB>λC)∧...

P (λA, λB , . . . , λk)dλAdλB . . . dλk

(8.4)

8.2 Monte Carlo - how to compute the integrals

Monte Carlo sampling relies on the law of large numbers, which states the
following. Suppose that (λA

i, λB
i, λC

i, . . .) is, for each i, a randomly selected
sample from the joint probability distribution. Suppose we have drawn N � 0
such samples. Then:

1

N

N∑
i=1

L(λA
i, λB

i, λC
i, A) ≈ E[L](A) (8.5)

(and similarly for choice B,C, . . ..)

Remark 8.2 Note that if necessary, this calculation can be performed in paral-
lel - for example, if N = 2 ·106, one CPU can compute the sum for n = 1 . . . 106

while a second CPU can compute the sum for n = 106 + 1 . . . 2 · 106.

An important question to ask - how accurate is (8.5)?

Theorem 8.3 Take δ as given. Suppose we wish to ensure that:

P

(∣∣∣∣∣ 1

N

N∑
i=1

L(λA
i, λB

i, . . . , A)− E[L](A)

∣∣∣∣∣ < ε

)
< δ (8.6)

Then we must make N at least as large as − ln(δ)/(2ε2).

Remark 8.4 Note the logarithmic growth of N with δ. Since it is unlikely
that VWO will ever run 1010 tests, we can choose δ = 10−10 resulting in
− ln(10−10) = 23.03.
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Proof. Note that L(λA
i, λB

i, . . . , A) ≤ 1. We can then apply Hoeffding’s
inequality:

P

(∣∣∣∣∣ 1

N

N∑
i=1

L(λA
i, λB

i, . . . , A)− E[L](A)

∣∣∣∣∣ < ε

)
< e−2Nε2 (8.7)

Setting ln(δ) = −2Nε2 or N = − ln(δ)/(2ε2) yields the result we seek. �

Theorem 8.5 Suppose N is large. Then we have the approximate value:

1

N

N∑
i=1

L(λA
i, λB

i, . . . , A)− E[L](A)→ N(0, S2/N) (8.8)

Here S2 satisfies the bound:

S2 ≤ VAR[λB − λA] + VAR[λC − λA] + . . .

= VAR[λB ] + VAR[λC ] + . . .+MVAR[λA]

where M is the number of variations.
The convergence is convergence in distribution - see http: // en. wikipedia.

org/ wiki/ Convergence_ in_ distribution# Convergence_ in_ distribution .

This theorem is proved in Section A of the Appendix.
Thus, if we wish to make the error from the Monte Carlo approximation

smaller than ε with probability τ , we must choose:

N =
[
(S/ε)cdf−1(τ/2)

]2
(8.9)

where cdf(z) is the cumulative distribution function of the normal distribu-
tion, and cdf−1(z) is the inverse of that function.

Remark 8.6 Suppose λA is given by a Beta distribution B(a, b). Then:

VAR[λA] =
ab

(a+ b)2(a+ b+ 1)
(8.10)

Thus, if you use Section 5 to compute posteriors, the bound on S2 can be
computed exactly.

So now consider the case where each variation had a fixed prior, (α, β) and
an experiment has run. Then:

S ≤
∑

x=B,C,...

(α+ cx)(β + nx − cx)

(α+ β + nx)2(α+ β + nx + 1)

+M

(
(α+ cA)(β + nA − cA)

(α+ β + nA)2(α+ β + nA + 1)

)
(8.11)
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An important observation here is the asymptotic complexity - suppose each
variation has approximately the same number of trials, i.e. nA ≈ nB ≈ n.
Then:

S ≤ O
(
M

n2

)
Substituting this into (8.9) yields:

N = O

([
M

n2ε
cdf−1(τ/2)

]2
)

Thus, bringing the error below ε grows quadratically with ε−1 and shrinks
quartically as the number of trials increases.

In practice, typical values of N will be on the order of 1-50 million, corre-
sponding to τ = 10−5 and ε = 0.0001.

9 Approximate worst case for the Bernoulli test

The following calculations are approximate only.

9.1 Two variations

We might ask the question, what is the worst case scenario for the Bernoulli
test to finish? The test will finish when E[L](A) ≤ ε, or:

E[L](A) =

∫ ∫
max(λA − λB , 0)P (λA, λB)dλAdλB ≤ ε

The worst case occurs when both variants are identically equal.
To compute a bound, first note that:

∫ ∫
max(λA − λB , 0)P (λA, λB)dλAdλB ≤

∫ ∫
|λA − λB |P (λA, λB)dλAdλB

(9.1)
Second, note that a Beta distribution is (in the limit of large a = Nζ, b = Nζ)

approximated by a normal distribution of variance σ2 = ζ(1− ζ)/N . Thus:

(9.1) ≈
∫ ∫

|λA − λB |C exp

(
− (λA − ζ)2 + (λB − ζ)2

2σ2

)
dλAdλB (9.2)

To evaluate (9.2), we change variables to u = (λA−λB)/
√

2, v = (λA+λB)/
√

2.
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This yields:

(9.2) ≈
∫ ∫

2−1/2 |u|C exp

(
−u

2 + (v − ζ)2

2σ2

)
dudv

= 21/2

∫ ∫
|u|C exp

(
− u2

2σ2

)
exp

(
(v − ζ)2

2σ2

)
dudv

= 21/2

[∫
C̄ exp

(
(v − ζ)2

2σ2

)
dv

] [∫
|u| C̃ exp

(
− u2

2σ2

)
du

]
= 21/2

[∫
|u| C̃ exp

(
− u2

2σ2

)
du

]
= 21/2σ

√
2/π = 2

σ√
π

= 2

√
ζ(1− ζ)

πN
(9.3)

The value for E[|u|] = σ
√

2/π is given on wikipedia: http://en.wikipedia.
org/wiki/Normal_distribution#Moments.

Thus, we find that in the worst case, we must wait until:

2

√
ζ(1− ζ)

πN
≤ ε (9.4)

or equivalently

N ≥ 4
ζ(1− ζ)

πε2
(9.5a)

Note that (9.5a) is dependent on the fact that the beta distribution approximates
the normal distribution, and this approximation is only valid when:

0 ≤ p± 3
√
ζ(1− ζ)/N ≤ 1 (9.5b)

Thus, the constraints (9.5a) and (9.5b) together are both necessary.

9.2 Many Variations

If we want to extend this analysis to K variations, we do the following. First
note that:

max{λB − λA, λC − λA, . . .} ≤
√ ∑

?=B,C,...

|λ? − λA|2 (9.6)

Plugging this into the equation for expected loss, we find:∫
. . .

∫
max(λB − λA, λC − λA, . . . , 0)P (λA, λB , . . .)dλAdλB . . . dλ

≤
∫
. . .

∫ √ ∑
?=B,C,...

|λ? − λA|2P (λA, λB , . . .)dλAdλB . . . dλ (9.7)
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If we change variables to (λA, ~u) with ~u = [λB −λA, λC −λA, . . .]T , we obtain:

(9.7) =

∫ ∫
|~u|P (λA, ~u)d~udλA (9.8)

We again use the normal approximation to the beta distribution, yielding:

(9.8) ≈
∫ ∫

|~u| 1

σ
√

2π
e−(λA−ζ)2/2σ2 1

(σ
√

2π)K−1
e−|~u|

2/2σ2

d~udλA

=

∫
1

σ
√

2π
e−(λA−ζ)2/2σ2

∫
r

1

(σ
√

2π)K−1
e−r

2/2σ2

rK−2VK−1drdλA (9.9)

where in the second line we shifted to polar coordinates with r = |~u|. Here
VK−1 = (K − 1)π(K−1)/2/Γ((K − 1)/2 + 1) is the area of the sphere in K − 1
dimensions. Now set s = r/σ, then dr = σds and:

(9.9) =

∫
1

σ
√

2π
e−(λA−ζ)2/2σ2

∫
sσ

1

(2π)(K−1)/2σ
e−s

2/2sK−2VK−1σdsdλA

=

∫
1

σ
√

2π
e−(λA−ζ)2/2σ2

(2π)−(K−1)/2VK−1σ

∫
sK−1e−s

2/2dsdλA (9.10)

The inner integral can be computed via Proposition C.3:

(9.10) =

∫
1

σ
√

2π
e−(λA−ζ)2/2σ2

σ(2π)−(K−1)/2VK−12(K−1)/2Γ(K/2)dλA

= σ(2π)−(K−1)/2VK−12(K−1)/2Γ(K/2)

∫
1

σ
√

2π
e−(λA−ζ)2/2σ2

dλA

= σ
(K − 1)Γ(K/2)

Γ((K + 1)/2)
=

√
ζ(1− ζ)

N

(K − 1)Γ(K/2)

Γ((K + 1)/2)
(9.11)

We want to make (9.11) ≤ ε. To do that, we require

√
ζ(1− ζ)

(K − 1)Γ(K/2)

Γ((K + 1)/2)

1

ε
≤
√
N

or

N ≥ ζ(1− ζ)
1

ε2

(
(K − 1)Γ(K/2)

Γ((K + 1)/2)

)2

(9.12)

Remark 9.1 In the case of K = 2, this reduces to (9.5a):

N ≥ ζ(1− ζ)
1

ε2

(
Γ(2/2)

Γ((2 + 1)/2)

)2

=
ζ(1− ζ)

ε2

4

π
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10 Modeling revenue

To model revenue we choose the following generative model. The revenue gen-
erated by an individual user i is given by:

αi ← Bernoulli(λ) (10.1a)

ri ← Expon(θ) (10.1b)

vi ← αi · ri (10.1c)

In this model, the variable αi ∈ {0, 1} represents whether or not the user
bought anything. The variable ri represents the size of their purchase if they
bought anything - otherwise this variable is meaningless and unobservable (since
if αi = 0, then αi · ri = 0 · ri = 0 regardless of ri). Finally the variable vi
represents the actual revenue generated by a visitor.

Note that the average revenue per sale is given by θ−1 and the average
revenue per visitor is λθ−1.

We wish to fit this model to an existing data set with the goal of computing
a posterior on ci, ri and vi.

10.1 Notation

In a given A/B test, let nA represent the number of visitors in variation A, cA
the numer of sales in variation A, and sA the empirical revenue per sale for
variation A. Similarly let nB , . . . represent the same variables for variation B.

Sometimes we will need to discuss individual sale variables. Toward that
end, let skA represent the size of the k-th customer’s sale in variation A. Thus:

sA =
1

cA

cA∑
k=1

skA (10.2)

When we are discussing only a single variation (mostly during the calculation
of posteriors), we will sometimes drop the subscripts and discuss n, c, s instead.

11 Posterior distribution for revenue/sale

11.1 Computing a posterior on sale size

Define the Γ(k, θ)-distribution as being the probability distribution having pdf
γ(k, θ, x):

γ(k, θ, x) =
1

Γ(k)θk
xk−1e−x/θ (11.1)

We can prove the following result:
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Lemma 11.1 Consider a set of variables si, i = 1 . . . c drawn from an expo-
nential distribution with decay rate θ. Suppose θ has a prior Γ(k,Θ). Then the
posterior is given by:

P (θ|s) ∼ Γ

(
k + c,

Θ

1 + Θcs

)
(11.2)

Proof. To compute the posterior P (θ|s), we use Bayes rule. In this calculation,
we let C = C(Θ, k, s) be a constant which varies from line to line, but does not
vary with θ.

P (θ|s) =
P (s|θ)γ(k,Θ, θ)

C
= C

(
c∏
i=1

θe−θs
i

)
1

Γ(k)Θk
θk−1e−θ/Θ

= Cθc+k−1 exp

[
−θ

(
1

Θ
+

c∑
i=1

si

)]

= γ

(
k + c,

1

1/Θ +
∑c
i=1 si

, θ

)
= γ

(
k + c,

Θ

1 + Θ
∑c
i=1 si

, θ

)
(11.3)

Determining that the last line is a gamma distribution follows from the second
to last line by noting that the θ-variance of the expression fits the form of a Γ-
distribution, and since the expression is normalized, there is no other possibility
for it besides being a gamma distribution.

Equation (11.2) follows from (11.3) by using (5.5). �

11.2 The total posterior

Given the above, we can now compute a posterior on (λ, θ) jointly. Let us
assume a prior f(λ; a, b) on λ and γ(k,Θ, θ) on θ. Then:

P (λ, θ|n, c, s) = f(λ; a+ c, b+ n − c)γ
(
k + c,

Θ

1 + Θcs
, θ

)
(11.4)

Facts about this distribution:

E[λ] =
a+ c

a+ b+ n
(11.5a)

Median[λ] = I−1
1/2(a+ c, b+ n − c) (11.5b)

Here I−1
z (α, β) represents the inverse (w.r.t z) of the incomplete beta function

Iz(α, β). This must be computed numerically, and quantiles can be computed
similarly.

VAR[λ] =
(a+ c)(b+ n − c)

(a+ b+ n)2(a+ b+ n + 1)
(11.5c)
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E[θ] =
Θ(k + c)

1 + Θcs
(11.5d)

Note that for large c this approaches s−1 as expected. There is no simple closed
form for the median of θ, but it can be computed via numerical inversion of the
CDF (for which a closed form does exist).

VAR[θ] =
Θ2(k + c)

(1 + Θcs)2
(11.5e)

As expected, the variance decreases like O(c−1).
It’s also useful to know the variance of the average sale size, which can be

computed via Proposition B.2 on page 28:

VAR[θ−1] =
(Θ−1 + cs)2

(k + c − 1)2(k + c − 2)
(11.5f)

As expected this behaves like O(c−1) as c →∞.

12 Chance to beat all for Revenue

The total gain from any variation is λ/θ - i.e. the probability of a sale times
the average value of a sale.

Suppose we’ve computed a posterior for λA, θA and λB , θB . The chance to
beat is given by:

P (λB/θB > λA/θA)

=

∫ ∫ ∫ ∫
H (λB/θB − λA/θA)

· f(λ; a+ cA, b+ nA − cA)γ

(
k + cA,

Θ

1 + ΘcAsA
, θA

)
· f(λB ; a+ cB , b+ nB − cB)γ

(
k + cB ,

Θ

1 + ΘcBsB
, θB

)
dλAdλBdθAdθB

(12.1)

Here the function H (x) is the Heaviside step function defined by H (x) = 1
for x >= 0 and H (x) = 0 for x < 0.

Because of the H (λB/θB − λA/θA) term, this integral is not separable. Be-
cause it is 4 dimensional, using a standard numerical quadrature will be ex-
tremely computationally intensive. However, this integral can be computed via
Monte Carlo sampling:

1. Draw samples λA
i, λB

i, θA
i, θB

i for i = 1 . . .M from the relevant distribu-
tions.

2. Count the number of samples for which λB
i/θB

i > λA
i/θA

i and divide by
M .
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13 Making decisions based on Revenue

We now define our loss function as the difference in expected revenue (assuming
a mistake) between the chosen variation and the max of the others:

L(λA, λB , θA, θB , A) = max(λB/θB − λA/θA, 0) (13.1a)

L(λA, λB , θA, θB , B) = max(λA/θA − λB/θB , 0) (13.1b)

With more variants, it would be defined as:

L(λA, λB , λC , θA, θB , θC , A) = max

(
λB
θB
− λA
θA
,
λC
θC
− λA
θA
, 0

)
(13.2a)

L(λA, λB , λC , θA, θB , θB , B) = max

(
λA
θA
− λB
θB

,
λC
θC
− λB
θB

, 0

)
(13.2b)

We can then define the expected losses:

E[L](A) = E[L(λA, λB , λC , θA, θB , θC , A)] (13.3a)

E[L](B) = E[L(λA, λB , λC , θA, θB , θC , B)] (13.3b)

Remark 13.1 For the Monte Carlo simulations above, I’m using the formula
M = (− ln δ)/ε2. Here δ is a desired probability of error (I typically choose
10−10) and ε is a desired magnitude of error (I typically choose 10−3). This
error bound is not strictly accurate - it’s the same bound as in Theorem 8.3.
Proving a similar bound for a distribution with infinite support (such as the
Gamma distribution) is an open problem.

As in the Bernoulli case, we allow a decision to be made when the expected
loss drops below a threshold of caring ε.

The decision procedure consists of finding the set of variations who’s loss is
below our threshold of caring:

{X ∈ {A,B, ...} : E[L](X) ≤ ε} (13.4)

The test can be stopped when this set is nonempty, and any variation in this
set is an acceptable choice.

14 Revenue Empirics

To measure the efficacy of this scheme according to frequentist criteria I ran
several A/A and A/B tests.
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Figure 8: Illustration of the termination time of the second A/B test.

14.1 Test - A/A test

To begin I ran an A/A test comparing a sales process with a 5% conversion rate
and a mean of 25$ revenue/sale. In this example, the standard deviation of the
data is $5.6 (compared to a mean revenue/visitor of $1.25).

According to Evan Miller’s t-test calculator at http://www.evanmiller.

org/ab-testing/t-test.html, this test will require 4,250 data points (per
sample) to resolve a 20% lift.

In the simulation, the Bayesian test finished with an average of about 3,292
data points (10th/90th percentile 250/7,750). The distribution is plottedin Fig-
ure 8.

14.2 Test - varying conversion rates

We now consider a comparison between a sales process with a conversion rate of
5% and 6% in the variant. The revenue/sale is the same (25$) in both variants.

I ran a set of 400 A/B simulations. The threshold of caring ε was chosen
to be 2% of the mean visitor value of $1.25, or $0.025. I.e., a $0.025 loss was
considered acceptable.

In the A/B simulations I ran, the Bayesian test finished with an average of
about 3,000 data points. Out of 400 simulations, 95.75% returned the correct
result. The 10’th percentile of test durations was 250 samples, the 50’th per-
centile was 1,500 samples and the 95’th sample was 4,750. See Figure 9 for an
illustration.

This approximately corresponds to the balanced mode in the tool.
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Figure 9: Illustration of the termination time of the first A/B test.

14.3 Test - varying average sale price

The second comparison considers a sales process with a conversion rate of 5%
in both variants, but one variant has an average sale price of $30 rather than
$20. The results were quite similar, and an error occurred in only 6% of cases.
The results are plotted in Figure 9.
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Figure 10: Illustration of the termination time of the second A/B test.
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Figure 11: Illustration of the termination time of the non-exponential revenue
distribution.

14.4 Test - revenue not from an exponential distribution

The same test as in section 14.2 was run, but this time the distribution of sale
prices was chosen uniformly from [$49,$129,$259]. The conversion rate was 5%
in variation A and 6% in variation B. This time the A/B test yielded the correct
answer 81% of the time. This time the mean number of samples required was
3,290, and the 95’th percentile was 7,000.

19% of the A/B tests did not reach convergence before 8,000 samples. These
were coded as returning variation A - as a result, the accuracy of the non-
exponential distribution was only 81%.

14.5 Why does Bayesian testing require fewer samples?

I attribute the drastically reduced number of samples primarily to the exact
modelling of the relevant probability distributions, i.e. modelling the data via
(10.1) rather than simply unknown random variables via the central limit the-
orem. This is likely a major source of win - the CLT model allows for a large
probability of negative revenue, since the standard deviation of $5.6 is much
larger than the mean of $1.25.

It is my belief that if we wished, we could develop a frequentist model of
conversions based on the exact probability distribution with similar accuracy.

15 Approximate worst case for the Revenue test

The following calculations are approximate only, and roughly correspond to
those in Section 9.
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15.1 Worst case for 2 variants

We might ask the question, what is the worst case scenario for the Bernoulli
test to finish? The test will finish when E[L](A) ≤ ε, or:

E[L](A) =

∫ ∫ ∫ ∫
max(λA/θA−λB/θB , 0)P (λA, λB , θA, θB)dλAdλBdθAdθB

≤ ε (15.1)

The worst case occurs when both variants are identically equal. So let us
suppose that nA = nB = N , cA = cB = ζN and sA = sB = ν.

From section 9, we recall that for largeN , the Beta distribution approximates
a normal distribution of mean ζ and standard deviation

√
ζ(1− ζ)/N . In a

similar way, the distribution of 1/θA when drawn from Gamma(k + c,Θ/(1 +
Θcs)) approximates a normal distribution with mean

µr =
1 + Θcs

Θ(k + c)
=

1 + ΘNζs

Θ(k +Nζ)
(15.2a)

and standard deviation

σr =
(1 + ΘNζs)

Θ(k +Nζ − 1)
√
k +Nζ − 2

(15.2b)

In what follows, let g(x; ζ, σ) be the pdf of a normal distribution with mean
ζ and standard deviation σ.

Definition 15.1 Define the function h(z) by:

h(z) =

∫
|x|e

−(x−z)2/2
√

2π
dx (15.3)

Note that h(z) ≈ z for large z.

Remark 15.2 Note that:∫
|x|e

−(x−z)2/(2σ2)

σ
√

2π
dx = σh(z/σ) (15.4)

We can thus approximate:∫ ∫ ∫ ∫
max(λA/θA − λB/θB , 0)P (λA, λB , θA, θB)dλAdλBdθAdθB

≤
∫ ∫ ∫ ∫

|λA/θA − λB/θB |P (λA, λB , θA, θB)dλAdλBdθAdθB

≈
∫ ∫ ∫ ∫

|λA/θA − λB/θB |TdλAdλBdθAdθB

(15.5)
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where

T = g(λA; ζ,
√
ζ(1− ζ)/

√
N)g(λB ; ζ,

√
ζ(1− ζ)/

√
N)

· g(sA;µrσr)g(sB ;µrσr)

We can apply Lemma C.2 to (15.5) to show that:

(15.5) ≤ 2√
π

[
h

(
ζ

√
N

ζ(1− ζ)

)
+ h (µr/σr)

]
σr

√
ζ(1− ζ)

N

Thus, to compute N we must choose N sufficiently large so that:

2√
π

[
h

(
ζ

√
N

ζ(1− ζ)

)
+ h (µr/σr)

]
σr

√
ζ(1− ζ)

N
≤ ε (15.6)

A Proof of Theorem 8.5

A proof is provided here since I don’t know of an external source to cite.

Lemma A.1 The function L(λA
i, λB

i, . . . , A) is convex in (λA, λB , . . .).

Proof. The functions λB − λA, λC − λA and 0 are all convex. The maxima of
a set of convex functions is convex. Note that L(λA

i, λB
i, . . . , A) is defined as

the maxima of the aforementioned linear functions, and hence is convex. �

To prove Theorem 8.5, we must apply the Lindeberg-Levy Central Limit
Theorem - see http://en.wikipedia.org/wiki/Central_limit_theorem#Classical_
CLT.

Specifically, we must provide a bound on the standard deviation of L(λA, λB , . . . , A).
Consider the random variable:

λB − λA = max (λB − λA, 0) + min (λB − λA, 0) (A.1)

We can compute the variance of both sides:

VAR[λB − λA] = VAR[max (λB − λA, 0)] + VAR[min (λB − λA, 0)]

+ covariance [max (λB − λA, 0) ,min (λB − λA, 0)]

The latter term is zero since the two variables inside the covariance have disjoint
support. Thus:

VAR[λB − λA] = VAR[max (λB − λA, 0)] + VAR[min (λB − λA, 0)]

or

VAR[max (λB − λA, 0)] = VAR[λB − λA]−VAR[min (λB − λA, 0)]

≤ VAR[λB − λA] (A.2)
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Similarly for λC we have VAR[max (λC − λA, 0)] =≤ VAR[λC − λA], etc.
We now observe that:

VAR[max (λB − λA, λC − λA, . . . , 0)] ≤
VAR[max (λB − λA, . . . , 0)] + VAR[max (λC − λA, . . . , 0)] + . . .

≤ VAR[λB − λA] + VAR[λC − λA] + . . . (A.3)

Thus, the variance of L(λA, λB , . . . , A) satisfies the bound:

VAR[L(λA, λB , . . . , A)] ≤ VAR[λB − λA] + VAR[λC − λA] + . . . (A.4)

B Numerical results for Gamma variables

This section merely computes a few simple facts about the Γ(k, θ) distribution.
Let x be a random variable distributed according to Γ(k, θ).

Proposition B.1 Let k > 2. Then:

E[x−1] = (kθ)−1 (B.1)

Proof. A computation:

E[x−1] =

∫ ∞
0

x−1 1

Γ(k)θk
xk−1e−x/θdx =

Γ(k − 1)

Γ(k)θ

∫ ∞
0

1

Γ(k − 1)θ(k−1)−1
x(k−1)−1e−x/θ =

Γ(k − 1)

Γ(k)θ
=

1

θ(k − 1)

�

Proposition B.2 Let k > 3. Then:

V AR[x−1] = θ−2(k − 1)−2(k − 2)−1 (B.2)

Proof. A computation. First compute E[x−2]:

E[x−2] =

∫ ∞
0

x−2 1

Γ(k)θk
xk−1e−x/θdx =

Γ(k − 2)

Γ(k)θ

∫ ∞
0

1

Γ(k − 2)θ(k−2)−1
x(k−2)−1e−x/θ =

Γ(k − 2)

Γ(k)θ2
=

1

θ2(k − 1)(k − 2)

Now we compute:

VAR[x−1] = E[x−2]− (E[x−1])2 =
1

θ2(k − 1)(k − 2)
− 1

θ2(k − 1)2

=
1

θ2

(k − 1)− (k − 2)

(k − 1)2(k − 2)
=

1

θ2

1

(k − 1)2(k − 2)

�
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C Facts about gaussians

Lemma C.1 ∫ ∫
|x− y| g(x; ζ, σ)g(y; ζ, σ)dxdy =

2σ√
π

(C.1)

Proof. Change variables to u = (x − y)/
√

2, v = (x + y)/
√

2. The integral
becomes:∫ ∫

|x− y| g(x; ζ, σ)g(y; ζ, σ)dxdy

=

∫ ∫ √
2 |u| g(u; ζ, σ)g(v −

√
2ζ; ζ, σ)dudv

=

(∫
g(v −

√
2ζ; ζ, σ)dv

)(∫ √
2 |u| g(u; ζ, σ)du

)
= 1 ·

(∫ √
2 |u| g(u; ζ, σ)du

)
=

2σ√
π

(C.2)

The last equality is given on wikipedia: http://en.wikipedia.org/wiki/

Normal_distribution#Moments �

Lemma C.2 Let x1, x2 ∼ N(ζ, σx) and let y1, y2 ∼ N(ξ, σy). Then:

E[|x1y1 − x2y2|] ≤
2√
π

(σxh(ζ/σx)σy + σyh(ξ/σy)σx)

=
2σxσy√

π
(h(ζ/σx) + h(ξ/σy)) (C.3)

Proof. First note that:

|x1y1 − x2y2| = |x1y1 − x1y2 + x1y2 − x2y2|
≤ |x1y1 − x1y2|+ |x1y2 − x2y2|

= |x1| |y1 − y2|+ |y1| |x1 − x2| (C.4)

Using this, we find that:∫ ∫ ∫ ∫
|x1y1 − x2y2| g(x1; ζ, σx)g(x2; ζ, σx)g(y1; ζ, σy)g(y2; ζ, σy)dx1dx2dy1dy2

≤
∫ ∫ ∫ ∫

|x1| |y1 − y2|Tdx1dx2dy1dy2

+

∫ ∫ ∫ ∫
|y1| |x1 − x2|Tdx1dx2dy1dy2 (C.5)

where T = g(x1; ζ, σx)g(x2; ζ, σx)g(y1; ζ, σy)g(y2; ζ, σy).
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The first integral can be simplified as follows:∫ ∫ ∫ ∫
|x1| |y1 − y2|Tdx1dx2dy1dy2

=

∫ ∫ ∫
|x1| |y1 − y2| g(x1; ζ, σx)g(y1; ζ, σy)g(y2; ζ, σy)dx1dy1dy2

=

∫
|x1| g(x1; ζ, σx)dx1

∫ ∫
|y1 − y2| g(y1; ζ, σy)g(y2; ζ, σy)dy1dy2

= σxh(ζ/σx)
2σy√
π

(C.6)

The same calculation can be applied to show that the second integral is equal
to σyh(ξ/σy)2σx/

√
π. This yields the result we seek. �

Proposition C.3 We have the identity:∫ ∞
0

xte−x
2/2dx = 2(t−1)/2Γ([t+ 1]/2) (C.7)

Proof. A calculation. Let u = x2/2, then x =
√

2u and dx = (2u)−1/2du.∫ ∞
0

xte−x
2/2dx =

∫ ∞
0

(2u)t/2e−u
du√
2u

= 2(t−1)/2

∫ ∞
0

ut/2−1/2e−udu = 2(t−1)/2Γ([t+ 1]/2) (C.8)

�

D Facts about inverse gamma distributions

Consider an inverse gamma distribution, having pdf

g(x;α, β) =
βα

Γ(α)
x−α−1e−β/x (D.1a)

and with cdf

G(x;α, β) =
Γ(α, β/x)

Γ(α)
. (D.1b)

Proposition D.1 We have the following results about expected values of loss
functions:

E[max{x− z, 0}] =
β

α− 1
[1−G(ζ;α− 1, β)]− z[1−G(ζ;α, β)] (D.2a)

E[max{z − x, 0}] = zG(ζ;α, β)− β

α− 1
G(ζ;α− 1, β) (D.2b)
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Proof. First note that

xg(x;α, β) ==

(
β

α− 1

)
βα−1

Γ(α− 1)
x−α−2e−β/x =

β

α− 1
g(x;α− 1, β).

∫ ∞
z

(x− z)g(x;α, β)dx =
β

α− 1

∫ ∞
z

g(x;α− 1, β)dx− z
∫ ∞
z

g(x;α, β)dx

=
β

α− 1
[1−G(ζ;α− 1, β)]− z[1−G(ζ;α, β)] (D.3)

Similarly:∫ z

0

(z − x)g(x;α, β)dx =
β

α− 1

∫ ∞
z

g(x;α− 1, β)dx− z
∫ ∞
z

g(x;α, β)dx

= zG(ζ;α, β)− β

α− 1
G(ζ;α− 1, β) (D.4)

�

Proposition D.2 Let x be distributed according to an inverse gamma distribu-
tion with params α, β. Then:

E[|x− z|] = z [2G(z;α, β)− 1)] +
β

α− 1
[2G(z;α− 1, β)− 1] (D.5)

Proof. Apply proposition D.1 twice. �

Proposition D.3 Let u,w > 0. Then we can compute:∫ ∫
|wx− uy| g(x;α1, β1)g(y;α2, β2)dxdy (D.6)

Proof.∫ ∫
|wx− uy| g(x;α1, β1)g(y;α2, β2)dxdy

= w

∫ [∫
|x− uy/w| g(x;α1, β1)dx

]
g(y;α2, β2)dy

=

∫ (
uy [2G(uy/w;α1, β1)− 1] +

β1

(α1 − 1)w
[2G(uy/w;α1 − 1, β1)− 1]

)
g(y;α2, β2)dy

=

∫
u

β2

(α2 − 1)w
[2G(uy/w;α1, β1)− 1] g(y;α2 − 1, β2)dy

+

∫
β1

(α1 − 1)w
[2G(uy/w;α1 − 1, β1)− 1] g(y;α2, β2)dy (D.7)

�
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